Results 1 to 1 of 1

Thread: Planets With Oxygen Donít Necessarily Have Life

  1. #1
    Join Date
    Sep 2003
    Location
    The beautiful north coast (Ohio)
    Posts
    48,789

    Planets With Oxygen Donít Necessarily Have Life

    A cautionary tale for future research. But it is also interesting that various conditions can produce chemicals necessary for life to form.

    From Laboratory Equipment magazine

    In their search for life in solar systems near and far, researchers have often accepted the presence of oxygen in a planet's atmosphere as the surest sign that life may be present there. A new Johns Hopkins study, however, recommends a reconsideration of that rule of thumb.

    Simulating in the lab the atmospheres of planets beyond the solar system, researchers successfully created both organic compounds and oxygen, absent of life.

    The findings, published Dec. 11 by the journal ACS Earth and Space Chemistry, serve as a cautionary tale for researchers who suggest the presence of oxygen and organics on distant worlds is evidence of life there.

    "Our experiments produced oxygen and organic molecules that could serve as the building blocks of life in the lab, proving that the presence of both doesn't definitively indicate life," said Chao He, assistant research scientist in the Johns Hopkins University Department of Earth and Planetary Sciences and the study's first author. "Researchers need to more carefully consider how these molecules are produced."
    The researchers tested nine different gas mixtures, consistent with predictions for super-Earth and mini-Neptune type exoplanet atmospheres; such exoplanets are the most abundant type of planet in our Milky Way galaxy. Each mixture had a specific composition of gases such as carbon dioxide, water, ammonia, and methane, and each was heated at temperatures ranging from about 80 to 700 degrees Fahrenheit.

    He and the team allowed each gas mixture to flow into the PHAZER setup and then exposed the mixture to one of two types of energy, meant to mimic energy that triggers chemical reactions in planetary atmospheres: plasma from an alternating current glow discharge or light from an ultraviolet lamp.

    ...

    After running the experiments continuously for three days, corresponding to the amount of time gas would be exposed to energy sources in space, the researchers measured and identified resulting gasses with a mass spectrometer, an instrument that sorts chemical substances by their mass to charge ratio.

    The research team found multiple scenarios that produced both oxygen and organic molecules that could build sugars and amino acids—raw materials for which life could begin—such as formaldehyde and hydrogen cyanide.
    ACS Earth & Space Chemistry

    Abstract:
    Photochemistry induced by stellar UV flux should produce haze particles in exoplanet atmospheres. Recent observations indicate that haze and/or cloud layers exist in the atmospheres of exoplanets. However, photochemical processes in exoplanetary atmospheres remain largely unknown. We performed laboratory experiments with the PHAZER chamber to simulate haze formation in a range of exoplanet atmospheres (hydrogen-rich, water-rich, and carbon dioxide-rich at 300, 400, and 600 K), and observed the gas phase compositional change (the destruction of the initial gas and the formation of new gas species) during these experiments with mass spectrometer. The mass spectra reveal that distinct chemical processes happen in the experiments as a function of different initial gas mixture and different energy sources (plasma or UV photons). We find that organic gas products and O2 are photochemically generated in the experiments, demonstrating that photochemical production is one of the abiotic sources for these potential biosignatures. Multiple simulated atmospheres produce organics and O2 simultaneously, which suggests that even the copresence of organics and O2 could be a false positive biosignature. From the gas phase composition changes, we identify potential precursors (C2H2, HCN, CH2NH, HCHO, etc.) for haze formation, among which complex reactions can take place and produce larger molecules. Our laboratory results indicate that complex atmospheric photochemistry can happen in diverse exoplanet atmospheres and lead to the formation of new gas products and haze particles, including compounds (O2 and organics) that could be falsely identified as biosignatures.
    Last edited by Swift; 2019-Jan-02 at 06:13 PM. Reason: typo
    At night the stars put on a show for free (Carole King)

    All moderation in purple - The rules

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •