That’s that 22 day heartbeat circling the core in a decaying intra-orbit since Tunguska, thus the space brothers and Musk, don’t ya know?
Winds and jet streams found on the closest brown dwarf. The team used NASA's Transiting Exoplanet Survey Satellite, or TESS, space telescope to study the two brown dwarfs closest to Earth. At only 6 1/2 light-years away, the brown dwarfs are called Luhman 16 A and B. While both are about the same size as Jupiter, they are both more dense and therefore contain more mass. Luhman 16 A is about 34 times more massive than Jupiter, and Luhman 16 B—which was the main subject of Apai's study—is about 28 times more massive than Jupiter and about 1,500 degrees Fahrenheit hotter.
https://phys.org/news/2021-01-jet-st...own-dwarf.html
https://arxiv.org/abs/2101.02253
TESS Observations of the Luhman 16AB Brown Dwarf System: Rotational Periods, Lightcurve Evolution, and Zonal Circulation
Daniel Apai, Domenico Nardiello, Luigi R. Bedin
Brown dwarfs were recently found to display rotational modulations, commonly attributed to cloud cover of varying thickness, possibly modulated by planetary-scale waves. However, the long-term, continuous, high-precision monitoring data to test this hypothesis for more objects is lacking. By applying our novel photometric approach to TESS data, we extract a high-precision lightcurve of the closest brown dwarfs, which form the binary system Luhman 16AB. Our observations, that cover about 100 rotations of Luhman 16B, display continuous lightcurve evolution. The periodogram analysis shows that the rotational period of the component that dominates the lightcurve is 5.28 h. We also find evidence for periods of 2.5 h, 6.94 h, and 90.8 h. We show that the 2.5 h and 5.28 h periods emerge from Luhman 16B and that they consist of multiple, slightly shifted peaks, revealing the presence of high-speed jets and zonal circulation in this object. We find that the lightcurve evolution is well fit by the planetary-scale waves model, further supporting this interpretation. We argue that the 6.94 h peak is likely the rotation period of Luhman 16A. By comparing the rotational periods to observed v sin(i) measurements, we show that the two brown dwarfs are viewed at angles close to their equatorial planes. We also describe a long-period (P~91 h) evolution in the lightcurve, which we propose emerges from the vortex-dominated polar regions. Our study paves the way toward direct comparisons of the predictions of global circulation models to observations via periodogram analysis.
Last edited by Roger E. Moore; 2021-Jan-08 at 12:57 PM.
Do good work. —Virgil Ivan "Gus" Grissom
Could we harness energy from black holes? In a study published in the journal Physical Review D, physicists Luca Comisso from Columbia University and Felipe Asenjo from Universidad Adolfo Ibanez in Chile, found a new way to extract energy from black holes by breaking and rejoining magnetic field lines near the event horizon, the point from which nothing, not even light, can escape the black hole's gravitational pull.
https://phys.org/news/2021-01-harnes...ack-holes.html
Do good work. —Virgil Ivan "Gus" Grissom