DAMPE boasts of a massive surface area, not only capably observing high cosmic ray volumes but also surveying the sky at high energies. It uses four instruments for capturing the high-energy particles and tracing them back to their origin: a BGO calorimeter, a plastic scintillator detector, a neutron detector and a silicon-tungsten tracker. The particle sources are believed to be dark matter collisions, possibly giving scientists new insight into the dark matter that can potentially help scientists follow a wealth of scientific pursuits, including studying oceanic depths on icy moons and mapping out layers of celestial bodies.
“[It’s] an exciting mission,” said Princeton University’s David Spergel of the DAMPE mission. A recent study in the Astrophysical Journal proposed that the solar system might be growing dark matter “hairs,” speculated to exist and sprout from Earth.
"When gravity interacts with the cold dark matter gas during galaxy formation, all particles within a stream continue traveling at the same velocity," explained Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California, who proposes the existence of long filaments of dark matter, or "hairs."
Based on many observations of its gravitational pull in action, scientists are certain that dark matter exists, and have measured how much of it there is in the universe to an accuracy of better than one percent. The leading theory is that dark matter is "cold," meaning it doesn't move around much, and it is "dark" insofar as it doesn't produce or interact with light.