In early October, the United States, the United Kingdom, Australia, Japan, Luxembourg, the United Arab Emirates, Italy and Canada entered into the Artemis Accords, which established agreed principles for cooperation in the civil exploration and use of the moon, Mars, comets and asteroids for peaceful purposes. The Artemis Accords build on multiple treaties that have shaped the behavior of nations and their commercial industries in the exploration and use of space, including the 1967 Outer Space Treaty, the 1972 Liability Convention and the 1975 Registration Convention. These prior multilateral agreements have a significant number of signatories and, accordingly, have been widely adhered to as binding international law, whereas the Artemis Accords today have eight signatories committing to implement a set of agreed principles through bilateral agreements. Therefore, it has been almost 50 years since any significant changes have been made internationally to address the evolution in the use of space resources, despite the dramatic increase in space activities during these past decades. With countries and commercial users planning increased short-term and long-term space missions, including for human habitation, mining, communications and energy, the Artemis Accords, while welcome, are overdue.
But perhaps even more overdue is a multilateral agreement — which the Artemis Accords are not — on the principles governing space traffic management and space sustainability. In the late 1970s, shortly after our last major treaty on space sustainability was in place, NASA was already predicting the Kessler effect, a theoretical scenario in which the density of low Earth orbit objects increases due to space pollution and becomes high enough that collisions between objects could cause a cascading effect, increasing the risk of further collisions. This would ultimately foreclose use of low earth orbital resources. If true, this would mean that even objects heading to geostationary orbit or farther into space (e.g., to the moon and Mars), would face increasing dangers as they travel through lower orbits.